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Outline
Behind the scenes of Procrustes analysis
• Translation, scaling, and rotation

Behind the scenes of Principal Components Analysis (PCA)
• PCA as a data rotation
• Covariance matrices as rotation matrices
• Eigenvectors, eigenvalues, and scores

Properties of PCA scores (shape variables)
• Equivalence of PCA scores and Procrustes residuals
• Orthogonality
• Descending order of variance
• “Significance” of PC axes

Curved spaces and tangent spaces
• Why is morphospace curved?
• What is tangent space?
• Does it matter? 
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Procrustes superimposition
also known as…

Procrustes analysis
Procrustes fitting
Generalized Procrustes Analysis (GPA)
Generalized least squares (GLS) 
Least squares fitting

• Centers all shapes at the origin (0,0,0)

• Usually scales all shapes to the same size (usually “unit size” or size = 
1.0) 

• Rotates each shape around the origin until the sum of squared 
distances among them is minimized (similar to least-squares fit of a 
regression line)

• Ensures that the differences in shape are minimized
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Procrustes superimposition

Before

After

• Translates, scales, and rotates 
landmarks to a common coordinate 
system

• Removes degrees of freedom in the 
process

• 2 + 1 + 1 = 4 for 2D data

• 3 + 1 + 3 = 7 for 3D data

• Creates statistical challenges

• colinearity

• “singular” covariance matrix

• “curved” shape space
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Procrustes:  Translation, Rotation, Rescaling
Thought problem...

How do you translate one of your original landmark shapes to the point {0,0} on a 
graph?
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How do you scale landmarks that have 
been centered?
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How do you rotate landmarks?

rotated shape = landmarks.RotationMatrix

theta is the angle in radians 
(2 pi radians in 360 degrees)
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The true goal of all morphometric analyses...

...to measure morphological 
similarity and difference

Morphometric distances are the main measure of difference

Measured as the difference between objects (which might be 
specimens or means of species, or whatever) on all the variables 
being used

In GMM, the main measure of difference is the Procrustes 
distance, the distance between shapes after they have been 
superimposed
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Procrustes distance
Sum of the distances between corresponding landmarks of two shapes.

A (X)

B (Y)

C = Sqrt[ X2 + Y2]

= shape A

= shape B



Department of Geological Sciences | Indiana University
(c) 2012, P. David Polly

Procrustes distance in Mathematica

How would you calculate the Procrustes distance between the mean shape 
(consensus) and any one of the objects?

1. How to calculate X2?  Y2?

({XA, YA} - {XB, YB}) ^2

X2 = (XA - XB)2

Y2 = (YA - YB)2

C = Sqrt[ X2 + Y2]

{XA, YA}

{XB, YB}
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Warning: 

Procrustes analysis tells you about variation of the 
entire shape in your sample.

Procrustes analysis does not (easily) tell you how much 
variation occurs at a particular landmark.

With the removal of size and coordinate system, shape is 
being measured as displacement in each landmark 
relative to all the other landmarks.
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Sometimes it is interesting 
to know whether part of a 
structure is more variable 
than another part.

Procrustes analysis is not the 
way to answer such a 
question...

Polly, P.D. 1998.  Variability, selection, and constraints: 
development and evolution in viverravid (Carnivora, Mammalia) 

molar morphology. Paleobiology, 24: 409-429.
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Rohlf, F.J. and D. Slice. 1990.  Extensions of the Procrustes Method for Optimal Superimposition of 
Landmarks.  Systematic Zoology, 39: 40-59.

The ‘Pinocchio Effect’ is an example:  
variance that occurs in only one landmark is redistributed to 
other landmarks during superimposition

Simulated shapes where 
only one landmark differs 
(like Pinocchio’s nose)

Procrustes 
superposition 
redistributes variation 
to all landmarks 

Other methods, like 
GRF, concentrate 
variation in subsets of 
landmarks



Earth and Atmospheric Sciences | Indiana University
(c) 2018, P. David Polly

GMM provides information about the relative 
displacements of all landmarks

Moving one point to elongate a triangle...

Is geometrically equal to moving the other two points in the 
opposite direction...

GMM cannot distinguish between the two.  Think carefully 
when you make biological or evolutionary interpretations.
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Variants on Procrustes

Procrustes (Generalized Least Squares, GLS)
 minimizes sum-of-squares among homologous landmarks
 best method for minimizing difference in shape
 distributes differences equally among landmarks

Generalized Resistant Fit (GRF)
 allows some landmarks to be more variable than others (removes the 

Pinocchio effect)
 does not find smallest possible difference between shapes

Bookstein Shape Coordinates
 uses two landmarks as baseline
 common in early “geometric morphometric” studies
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Euclidean Distance Matrix Analysis (EDMA)

• Method for localizing variation in particular landmarks
• Based on matrix of distances between landmarks 

Procrustes approach: 
summed distance between shapes

EDMA approach: 
matrix of distances between landmarks 

compared between shapes

face 1 face 2faces 1 & 2

Intro to EDMA literature:  Richtsmeier, J.T., Burke Deleon, V. and Lele, S.R., 2002. The promise 
of geometric morphometrics. American Journal of Physical Anthropology, 119: 63-91.
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What does PCA do?

1. Rotates data to its major axes for better visualization

2. Preserves original distances between data points 
(in other words, PCA does not distort the variation data, but 
only if the covariance method is used, which is standard in 
geometric morphometrics)

3. Removes correlations between variables to make further 
statistical analysis simpler
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Polly, P. D. 2017.  
 Morphometrics and evolution: the challenge of crossing rugged 

phenotypic landscapes with straight paths .  Vavilov Journal of 
Genetics and Breeding, 21: 452-461.

Anatomy of morphospace
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Important points:  the “meaning” of PCA

1. Principal components analysis finds the axes of greatest variation in 
a data set

2. PCA removes correlations from the data 

3. Principal components scores are “shape variables” that are the 
basis for further analysis

4. But PCA is nothing more than a rotation of the data!
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Behind the scenes in PCA of landmarks

Procrustes
This aligns shapes and minimizes differences between them to ensure that only real shape 
differences are measured.

1. Subtract mean (consensus) from each shape to produce “residuals” 
This centers the PC axes on the mean (consensus) shape.

2. Calculate covariance matrix of residuals
Estimates variance and covariance among the original variables

3. Calculate eigenvalues and eigenvectors of covariance matrix
Finds the major axes of the data and the variation along them. 

4. Multiply residuals times eigenvectors to produce scores
Rotates the original data onto the major axes and gives the coordinates for their new position.
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Output of PCA

Eigenvalues
variance on each PC axis
(In Mathematica:  Eigenvalues[CM])

Eigenvectors
loading of each original variable on each PC axis
(In Mathematica:  Eigenvectors[CM])

Scores (=shape variables)
location of each data point on each PC axis
(In Mathematica:  PrincipalComponents[resids])

resids are the residuals of the Procrustes coordinates
CM is the covariance matrix of the residuals

Use this method to get eivenvalues and eigenvectors
{vects, vals, z} = SingularValueDecomposition[CM]
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X 

Y PC1 

PC2 

The principal components (PCs) of a data set 
are its major axes



Department of Geological Sciences | Indiana University
(c) 2012, P. David Polly

! 10 ! 5 5 10

! 2

! 1

1

2

3

PC1 

PC
2 

X 

Y
 

PC1 PC2 

Mean changes to 0.0 (accomplished by 
subtracting mean from Procrustes points 

Data rotated so slope is 0.0 

Principal components are a ‘rigid rotation’ of the original data

Note that variance increases along horizontal axis, but decreases along vertical axis.
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A 

B 

C 

PCA is based on the covariance matrix
Diagonal elements are variances, off-diagonal are covariances (slopes)

A B C

A 6.56 4.69 2.59

B 4.69 4.21 1.38

C 2.59 1.38 1.36



Department of Geological Sciences | Indiana University
(c) 2012, P. David Polly

Eigenvalues
Variance of data along each PC axis

PC 1 = 11.08
PC 2 = 1.01
PC 3 = 0.04

PC1 PC2 PC3
PC1 11.08 0 0

PC2 0 1.01 0

PC3 0 0 0.04
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Important point: the meaning of eigenvalues
Between 95% and 99% of data lie within 2.0 SDs of the mean

1. If you know the variance, you know the standard deviation is its square-root;

2. You know that nearly all the data have a range of 4 * SD;

3. If the mean is 0.0, then nearly all the data lie 
between -2 * SD and +2 * SD;

4. The eigenvalues (or singular values) of a PC are variances, therefore the 
range of data on that PC can be calculated from them.



Department of Geological Sciences | Indiana University
(c) 2012, P. David Polly

Important point: the meaning of eigenvalues (cont.)

Total variance of morphometric data set is the total amount of shape 
variation, which can be calculated three ways:

1. Summing squared distances between landmark points and the consensus (sample mean) for all 
the objects and dividing by (n-1);

2. Summing the eigenvalues that are returned by the PCA;

3. Summing squared PC scores (have a mean of zero so no subtraction is required) and dividing by 
(n-1);

If these three calculations don’t give the same number, something is wrong
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PC 1 = 11.08 

PC 2 =   1.01 

PC 3 =   0.04 

-------------- 

          12.13 

Eigenvalues 

100 * 11.08 / 12.13 = 91.3 

100 *   1.01 / 12.13 =   8.3 

100 *   0.04 / 12.13 =   0.3 

------------------------------- 

                              100.0 

Percent explained 

Useful variants on Eigenvalues 

11.08^0.5 =  3.33 

  1.01^0.5 =  1.00  

  0.04^0.5 =  0.20 

Standard Deviation 

(procGPA reports this) 

PC 1 PC 2 PC 3 

Scree plot 

BarChart[Eigenvalues[CM]
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Eigenvector ‘loadings’ tell how each original 
variable contributes to the PC 

PC1 PC2 

X 0.89 -0.44 

Y 0.44 0.89 

(-x, +y) 

(-x, -y) 

(+x, +y) 

(+x, -y) 

X 

Y
 

PC1 

PC2 

Eigenvector Matrix 
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Eigenvectors also describe how to transform data 
from original coordinate system to PCs and back 

PC1 PC2 

X 0.89 -0.44 

Y 0.44 0.89 X 

Y
 

PC1 

PC2 
(multiply PC1 X score by 0.89 and PC1 Y score by -0.44 and add  

back X,Y meanto get real X,Y) 

Eigenvector Matrix 
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Eigenvectors: definition 1 
Angles between PC and original variables 

(the eigen vector matrix is a rotation matrix in radians) 

   
   
    

PC1$ PC2$ PC3$

Var$A$ +0.76$ !0.58& !0.29&

Var$B$ 0.28$ !0.69& 0.66&

Var$C$ 0.58$ !0.42& !0.70&
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Same Eigenvectors converted from 

radians to degrees 

   
   
    

PC1$ PC2$ PC3$

Var$A$ +43.8$ !33.1% !16.4%

Var$B$ 16.2$ !39.9% 37.7%

Var$C$ 33.2$ !24.2% !39.9%
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Eigenvectors: definition 2 
Loading (or importance) of each variable to the PC. 

The larger the absolute value, the more important the variable. 

   
   
    

PC1$ PC2$ PC3$

Var$A$ +0.76$ !0.58& !0.29&

Var$B$ 0.28$ !0.69& 0.66&

Var$C$ 0.58$ !0.42& !0.70&



Department of Geological Sciences | Indiana University
(c) 2012, P. David Polly

Scores 
The coordinates of each data point on the PC axes.   

These numbers can be thought of as new variables, or 

shape variables.  

(7.58, -1.18) 

Score on PC1 

and PC2 
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PCA plots have lots of meaning

Gingerich, P.D.  2003.  Land-to-sea transition in early whales: evolution of Eocene 
archaeoceti (Cetacea) in relation to skeletal proportions and locomotion of living 
semiaquatic mammals.  Paleobiology, 29: 429-454.
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PCA is important in Geometric Morphometrics because....

1. PCA scores are used as shape variables

2. Eigenvectors are convenient axes for shape space

3. Eigenvectors and their scores are uncorrelated as variables

4. Variance (eigenvalues) is partitioned across eigenvectors and scores in 
descending order

5. Scores can be safely used for all other statistical analyses, including tree 
building

6. Eigenvectors can be used to build shape models
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PCA vs Relative Warps vs Partial Warps

Relative warps = Principal components
Relative warps/Principal components organize shape variation so that the greatest amount is explained 
on PC1, second greatest on PC2, etc.  Also PC1 is uncorrelated with PC2 is uncorrelated with PC3, etc.

Partial warps (can safely be ignored)
Partial Warps measure the “scale” of shape variation over the entire object down to a small part of the 
object. NOT principal components (even though the plots look alike).  Partial warp 1 explains variation in 
ALL the landmarks, Partial warp 2 explains variation in part of the landmarks, Partial warp 3 in a smaller 
number, etc. Partial Warp 1 MAY be correlated with Partial warp 2, etc. 
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Shape modelling...
How to construct models of shapes in morphospace

Ingredients:

1. mean shape (consensus)

2. eigenvectors 

3. the score (address) of the point 
to be modelled

-0.2 -0.1 0.0 0.1

-0.2

-0.1

0.0

0.1

PC 1

PC
2

Morphospace

Model = consensus + ∑ (scores * eigenvectors)
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Shape modelling:  note scores of the models

-0.2 -0.1 0.0 0.1

-0.2

-0.1

0.0

0.1

PC 1

PC
2

Morphospace

{0,0} {0.12,0}{-0.16,0}

{0,0.14} {0.12,0.14}{-0.16,0.14}

{0,-0.16} {0.12,-0.16}{-0.16,-0.16}
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Shape models

Basic equation for 2D shape space:  

model = score PC1 * vector PC1 + score PC2 * vector PC2 + consensus

Model at center of the space:

model = 0 * vector PC1 + 0 * vector PC2 + consensus
           =  consensus

Model at center right:

model = 0.12 * vector PC1 + 0 * vector PC2 + consensus
           =  0.12 * vector PC1 + consensus

Model at upper right:

model = 0.12 * vector PC1 + 0.14 * vector PC2 + consensus


